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NOMENCLATURE

A ,A = Stiffener Cross-Sectional Areas

N
Ai j  = 7 -k

j tij (zk " z.-1

k=l

N
1 t -k 2 2

ij =2 L.,.ij(zk- Zk. I )

k-1

N
1 -- k 3 3D ij 3 LQij (k " k-1 )

k-l

EillE22,G12'12 - Orthotropic Material Engineering Constants

Ex ,Ey  N Young's Moduli for Stiffener Material

exe y Stiffener Eccentricities

F Airy Stress Function

h Shell Thickness

h ,h z-Coordinate of Extreme Surfaces of the Shell

'Xc Yc Second Moments of Stiffener Areas

L = Length of Shell

xl'y = Stiffener Spacings
Xy

Mxx, M XYMyy = Moment Resultants

Nxx, N XY,Nyy Stress Resultants

Nxx,N S Applied Stress Resultants

QiJ =Material Elastic Constant

R Radius of Shell

u,v,w Displacement Components

w OR Initial Geometric Imperfection
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NOMENCATURE
(Continued)

xy,z Coordinates

z M Batdorf Curvature Parameter

= 0 for Donnell's Approximation

1 for Sanders' Approximation

xyOo o 0= Reference Surface Strain Components

= Angle Between the Strong Orthotropic Direction and the

x-axis

SxxK yy ,y = Changes of Curvatures and Torsion of Reference Surface

= Imperfection Amplitude Parmeter

xxa yy, = Stress Components

1fx,9y= Rotations About In-plane Axes x and y

I
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SIIO4ARY

-* Imperfect, laminated, circular, cylindrical, thin shells supported in

various ways and subjected to a uniform axial compression and torsion (indi-

vidually applied or in combination) are analyzed. The analysis is based on

nonlinear kinematic relations, linearly elastic material behavior, and the

usual lamination theory. The laminate consists of orthotropic laminae, which

typically characterize fiber reinforced composites. Two types of formulation

have been developed; one isreferred to as the w,F-formulation, based on

Donnell-type of kinematic relations. The governing equations consist of the

transverse equilibrium equation and the in-plane compatibility equation. These

two equations are expressed in terms of the transverse displacement, w, and

an airy stress resultant function, F. The other, referred to as the u, v, w-

formulation, is based on Sanders'-type of kinematic relations. The governing

equations for this case consist of the three equilibrium equations. These three

equations are expressed in terms of two in-plane displacement components u, v, and

the transverse displacement component, w. Donnell's type of shell theory approx-

imation can be treated as a special case in the u, v, w-formulation.

Some results are generated for certain geometries (isotropic and lami-

nated) and these serve as bench marks for the solution scheme (both formulations).

Results are also generated for composite cylinders by changing several parameters.

The scope of these parametric studies is to establish the effect of geometric

imperfections, lamina stacking, and length to radius ratio. Moreover, theoret-

ically computed critical conditions are compared to experimentally obtained

results.
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CHAPTER I

INTRODUCTION

Shell configurations of various constructions (metallic with or

without stiffeners, laminated, plastic etc.) have been widely used as

structural elements, for many decades. These configurations, in many

cases, are primarily designed to withstand destabilizing loads, which are

applied individually or in combination. Various linear and nonlinear shell

theories (based on different approximations of the kinematic reslations)

have been employed in attempting to predict critical loads, as well as,

pre- and post-buckling behavior of perfect and imperfect shell

configurations.

One of the simplest shell theories is that, which is based on the

Donnell (1) approximation (or Mushtari-Vlasov-Donnell approximation) for

both, linear and nonlinear kinematic relations. Donnell's equations have

been widely used in the solution of problems of stability and equilibrium.

From time to time, because of the approximate nature and because of

the extreme simplicity of Donnell's equations, doubt has been raised as to

their accuracy. Hoff (2) in 1955 gave the range of some basic parameters

of perfect, thin, circular, cylindrical shells, for which solutions to

Donnell's and FlUgge's (3) equations are approximately equal. Moreover,

Dym (4) in 1973 compared buckling results obtained from Donnell's equations

with those obtained from Koiter-Budiansky (5,6) equations for thin, circu-

lar, perfect cylinders in uniform axial compression. Furthermore, Simitses

and Aswani (7) compared critical loads for the entire range of radius to

thickness and length to radius ratios and for various load behaviors

(during the bucklir --noes iot a laterally loaded thin cylindrical shell



by employing several linear shell theories; Koiter-Budiansky (5,6),

Sanders (8), Fl'gge (3) and Donnell (1).

Other comparisons of the linear version of the various shell theories

have been reported by Toda (9), Koga and Endo (10), Microys and

Schwaighofer (11, 12) and Akeju (13). All of the above investigations deal

with isotropic thin cylindrical shells except for Ref. 12, which deals with

an orthotropic cylindrical shell.

The only investigation that has any nonlinear flavor is the study of

El Naschie and Hosni (14), but even this deals only with initial post-

buckling behavior and for an infinitely long thin cylinder (thin ring).

The present report gives a comparison between critical loads for

imperfect, thin, cylindrical shells (limit point loads) of isotropic and

composite construction, under uniform axial compression for two shell

theories, that of Sanders (8) and that of Donnell (1). The intention here

is to identify the parameters which affect the accuracy of critical

conditions established through Donnell equations, by comparing them to

those established by Sanders equations. The implication here is that the

Sanders equations, which are typical of the more accurate nonlinear shell

equations (5,6,7), should yield accurate results, while the Donnell

equations are viewed as approximate and therefore less accurate.

This report is a contiuation of Ref. 15. In Ref. 15 the following

are presented: 1) the mathematical formulation and deviration of the gov-

erning equations, based on Donnell-type (1) non-linear kinematic rela-

tions, and presented in terms of the transverse displacement component, w,

and an Airy stress (resultant) function, F, defined in the text; this is

called the w,F - formulation; 2) the mathematical formulation and deriva-

2



tion of the governing equations, base on Sanders-type (8) nonlinear

kinematic relations and presented in terms of the three displacement

components, u, v and w; the kinematic relations used correspond to small

strains, small rotations about the normal, but moderate rotations about

in-plane axes; this is called the u,v,w-formulation, and the Donnell's

kinematic relations are included in the Sanders relations, therefore this

formulation covers both cases (Donnell is a special case of the Sanders

equations); 3) solution schemes for both formulations; the solution

methodology for the w, F-formulation includes the capability of obtaining

post-limit point behavior, while the solution scheme for the u,v,w -

formulation refers only to pre-limit point behavior (but nonlinear)

including the estimation of critical conditions (limit point loads);

moreover, the flow chart and listing of the respective computer codes are

presented in the appendices of Ref. 15;4) several numerical results,

generated with two objectives in mind, (a) some serve as bench marks for

the solution schemes, and (b) some limited parametric studies are

performed in order to assess effects of boundary conditions, of load

eccentricity and of lamina stacking sequence for axially-loaded laminated

cylindrical shells. Furthermore, some limited studies are performed for

torsion. For both load cases, the imperfection sensitivity of the

configuration is assessed; all of these results were obtained by employing

the w,F-formulation.

In this report, additional results, obtained by the w,F-formulation,

are presented. The objective here is to compare theoretical predictions

with experimetal results. Moreover, results (critical conditions),

obtained by the u,v,w-formulation are presented. The objective here is to



establish which parameters affect the accuracy of Donnell-type of equations.

This is accomplished by comparing Donnell-theory results with Sanders-

theory results, the implication being here that the Sanders-theory results

are closer to being exact. This is done for axially-loaded, imperfect

shells of isotropic, orthotropic and laminated construction. These studies

are necessary in order to establish the acceptability of the parametric

studies (conclusions of) presented in Ref. 15. Finally, since the reported

studies are not completeproper recommendations are offered.

41
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CHAPTER II

MATHEMATICAL FORMULATION AND SOLUTION

The mathematical formulation and a concise description of the

solution scheme, for the uv,v-formulation are presented in this chapter.

The geometry and sign convention are shown on Figs. 1 and 2. The configu-

ration consists of a laminate, which is orthogonally and eccentrically (in

general) stiffened by closely spaced stiffeners (in the axial and hoop

directions of the cylinder).

In this formulation (u,v,v), two distinctly different kinematic

relations (different shell theories) are employed. One is due to Sanders

(8) and one due to Donne-! (1). In the case of Sanders' equations it is

assumed that the reference surface strains are small, the rotation about

the normal is negligibly small and the rotations about in-plane axes are

moderate.

II.1 Kinematic Relations

The Sanders kinematic relations are based on the assumption of a

perfect reference surface (in our case perfectly circular, cylindrical

surface). These kinematic relations are modified to include the effect of

a small initial geometric imperfection, w°(x,y).

Let w0 (x,y) be measured from the perfectly cylindrical surface of the

laminated shell. Let w(x,y) denote the transverse displacement component

of material points on the reference surface and be measured from the

undeformed surface. It is positive outward (see Fig. 1) and the mideurface

of the laminate is taken to be the reference surface (for convenience; the

choice is arbitrary). Let u(x,y) and v(x,y) be the in-plane displacement

5
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components (see Fig. 1). The kinematic or strain-displacement relations

are:

G X x)XX yy E-y+ yr ) xyy .) -. 1)

W eve
E-XX = "Ua)x + -1 ?-

5Y f 1, + V 0

.,- P Y (3)

11.2 Stress-Strain Relations

The smeared technique (Refs. 16 and 17) is used for the orthogonal

stiffeners and the usual lamination theory for the laminate (see Ref. 18).

Each lamina is assumed to be orthotropic and the directions of orthotropy

make an angle 0 with respect to the reference axes x and y. Note that if

the orthotropic axis are denoted by "1" and "2", 0 is the angle between

axes "1" and x, measured counterclockwise from the x-axis.

~, . # . . .... . ... .. -,/ ...I



The stress-strain relations for each lamina are transformed to the

xy-axes (18). Moreover, the stress-strain relations for the closely spaced

orthogonal and eccentric stiffeners are written on the basis of the

assumptions (see Ref. 16) that (i) the stiffeners do not carry shear but

only normal stresses, (ii) the stiffeners are torsionally weak and (iii)

the stiffener-laminate connection is monolithic. The stiffener eccentric-

ities are positive if the stiffeners are placed on the outer side of the

laminate (in the positive z-direction).

Next, the usual stress and moment resultants are defined and their

relations to the reference surface (midsurface of the laminate) strains and

changes in curvature and torsion are obtained. These are (in matrix form)

- - - - 0

W)y A~A.N2 B1  4 k3

I o_ , k0 ....

0 0

9



0 0 0

[5 ~ ~E] (jw] Et #*x y*eAj/Q ox
0 o 0

and Aij , Bij and Dij are the usual stiffnesses employed in lamination

theory (18). Furthermore, Ex and Ey are Young's moduli for the stringer

and ring material, Ax and Ay stiffener cross sectional areas, (x andty

stiffener spacings,ex and e stiffener eccentricities, and Ix  andc Yc
second moment of stiffener areas about centroidal axes.

11.3 Equilibrium Equations and Boundary Conditions

The governing equations are derived for an orthogonally and eccen-

trically stiffened, laminated, imperfect, thin, circular cylindrical shell,

subjected to eccentric in-plane loads and uniform external constant-

directional pressure. This is done in order to have a set of equations,

which can easily be specialized to and accommodate the following construc-

tions and geometries: perfect or imperfect metallic (isotropic) with or

without stiffening; and laminates of symmetric, antisymmetric or completely

asymmetric lamina stacking. The nonlinear field equations (equilibrium)

and related boundary conditions are derived from the principle of the

stationary value of the total potential. These equations are:

. .. ..+ N , 1 y 0It

10(cd 2 .



+ T M.VlY)X+ "'Y'1,Y)/PJ =0

y(~w~.j-+w)]- NY- !c.,N,, , 7 ) , ," ,y34

+ MX(C Jx 4- 2M x y Y,1  4- )
The boundary conditions at x 0 and L are either natural (force and

moments prescribed) or kinematic

Either Or

N x x i -0S~xR =

( -- N+, ~

+ MxK.,x+ 2 MAy G .- x + W1 YP V=

IxX=- Mxx w 3x=O

Note that the "bar" quantities denote applied forces and monments.

II.4 A Solution Methodology

11



The solution procedure consists of several steps, which are outlined

herein with brevity (for details see Ref. 15). These steps are:

(1) A separated form is assumed for the three dependent variables

u(x,y), v(x,y) and w(x,y) [displacement components].

W&jk,y) 20LK Sj_

k

VV(X)j (X osUM, Vx.,() .5;A±z

Note that since sin_ = 0 the functions u2 0 W, v2 0 W, and w2 0(x)

do not enter into the solution scheme, and thus the number of independent

and unknown functions of position x is (6k + 3).

The known imperfection w0 (x,y) can also be expressed in a form similar

to w(x,y). In this case wvli(x) and w°2i(x) are known (taken as known)

functions of position.

(2) The expressions for the displacement components are substituted

into the kinematic relations, Eqs. (2) and (4). Because of the nonlinear-

ity of the in-plane strain-displacement equations, this substitution yields

double summations for the trigonometric functions. These double summations

involve products of sines and cosines in all four possible combinations (sine

- sine, cosine - cosine, sine-cosine and cosine - sine). Use of trigono-

metric identities involving products changes the double summation to singleI summation of either sine or cosine terms but with twice as many terms.

12



Through this step, all strain components (stretching and bending) can be

expressed in terms of sines and cosines of iny/R. Some of the sums go from

i - 0 to i - k and some from i - 0 to i - 2k. Note that the coefficients

of the sine and cosine terms involve linear and nonlinear combinations of

the (6k + 3) dependent functions, uli, u2i, vii , v21 , wli and w21 .

(3) The above separated expressions for the in-plane strains, and

changes in curvature and torsion are then substituted into the constitutive

equations, Eqs. (6). Since these equations relate the stress and moment

resultants to the stretching (Eij's) and bending (Xij's) strains in a

linear manner, then use of Eqs. (6) yields single sums of sines and cosines

of iny/R, similar to those for strains.

(4) Once steps (2) and (3) are completed, the obtained separated

expressions for the stress and moment resultants, along with the assumed

expressions for the displacement components (u, v and w) are substituted

into the equilibrium equations, Eqs. (10).

Note that some of the stress resultants are multiplied by either some

displacement components or their gradients. Because of this one obtains

products of sums (of sines and cosines) and some sums go from i = 0 to i f

k (for the Nij's). Using a procedure similar to the one outlined in step

(2), these products of sums are changed to a single sum and the highest

upper limit of the summation is 3k (the single sums go from i = 0 to i =

3k). The boundary conditions, Eqs. (11) can also be expressed in term of

the dependent variables, following the above procedure.

(5) The Galerkin procedure is then employed, in the circumferential

4direction. The vanishing of the Galerkin integrals leads to (6k + 3)

unknown functions of position x, uli(x), vli(x), wli(x) for i - 0, 1, 2 ...

k, and u2i(x), v2i(x) and w2i(x) for i = 1, 2, ... k.

13



(6) Next, the generalized Newton's method (19, 17) applicable to

differential equations, is used to reduce the nonlinear field equations and

boundary conditions to a sequence of linearized systems. The linearized

iteration equations are derived based on the conjecture that the solution

to the nonlineaar set can be achieved by small corrections to an approxi-

mate solution. The small corrections or the values of the variables at the

(m + l)th step, in terms of the values at the closely spaced mth state, can

be obtained by solving the linearized differential equations. The lineari-

zation of a typically nonlinear term (product of X and Y), in the differen-

tial equations, is shown below.

bY4 4 J x

~I Y ~i

i -x(Y*'+Jy"l, Y (x' 4 ? _X" 4

(7) The order of the linearized differential equations is reduced

from four to two by a simple transformation. If the vector of all the

unknowns is denoted by [x] (in matrix form) then

x~ ~ 1 2 )t V2" L , L

For convenience the number of unknowns is taken as (6k + 6) subject to

the constraint

!U2.0 JZO W-10 0 _)

14



The iteration equations can be written in matrix form as

CR41 Jxxx + LP-1 lx )xxi +19-~Z31 lXmxi +

CPRJ 'OXI + EjROJ i
By introducing the transformation

only in connection with the third and fourth derivatives, the iteration

equations, Eqs. (16), become

where [R], [S), and [TI are 12(k + 1) by 12(k + 1) square matrices, with

elements involving values of the variables at the mth step [see Eq. (14)

plus other known parameters. (GI is a 12(k + 1) by one matrix with known

elements.

Moreover, the boundary terms are also put in matrix form

The details can be found in Ref. 15.

15



(8) The linearized iteration equations, Eqs. (18) are next cast into

finite difference form by employing the usual central difference formula.

At each end of the cylindrical shell (boundaries x = 0 and x = L) one

fictitious point is used. The required additional equations are provided

by the boundary terms, Eqs. (19), and some auxiliary equations, which are

also cast in finite difference form.

(9) Finally, the total potential is expressed in terms of the

dependent functions and, at each level of the applied loading, its value is

computed by numerical integration.

In closing, a computer program has been written to compute the

response of the shell at each level of the applied loading. Initially, at

a low value of the loading, the solution is estimated through the use of

the linear axisymmetric equations. Then, the iteration equations are

employed, and by step increasing the loading the complete response (up to

the limit point) (20) is obtained.

Several results are obtained by employing this formulation (u,v,w) and

are discussed, in detail, in the next chapter.

16



CHAPTER III

RESULTS AND DISCUSSION; U,V,W- FORMULATION

Numerical results are generated for the u,v,w - formulation, by

employing two different digital computers: (a) the interactive computer

IBM 43/31 at the Technion Computer Center and (b) the VAX 11/780 of the

GTICES (Georgia Tech integrated Computer Engineering System) Systems

Laboratory of the School of Civil Engineering.

III.1 Description of Structural Geometry.

Three basic configurations are used in generating results. They

consist of an isotropic cylinder, an orthotropic one and a laminated one.

All configurations are imperfect, and the imperfection shape is either

symmetric or (virtually) axisymmetric. The laminated geometry is the one

employed in (21). The properties for each configuration are given

separately.

Isotropic Geometry

The isotropic geometry consists of a thin imperfect cylindrical shell

with the following dimensions and properties

E 7.Z#4O's4NJ*z (10,SK10 s) , r=O,30

18.7 S9 1!S1o .0

As seen from the data above, the cylinder lengthL, and the shell

thickness, h, are varied in order to cover the range of practical interest.

17



Orthotropic Geometry

The properties of the orthotropic configuration are (given in terms of

axes "1" and "2").

Ell = 2.069 x 108kN/m2 (30 x 106 psi) ; Vr'12 = 0.21

E22 = 0.1862 x 108 kN/m2 (2.7 x 106 psi) ; GL Z= 0.0448 x 108kN/m2 (0.65 x

106 psi)

h = 0.05385 cm (0.0212 in.) ; R = 10.16 cm (4in.) or 19.05 cm (7.5 in.)

and 14- L/RC- 10.

If 0 is the angle between the orthotropic axis "1" and the reference axis

x, both 00 and 900 configurations are employed, herein.

Laminated Geometry

For the laminated geometry, a four-ply laminate is employed. The

orthotropic lamina properties arethe same as those given for the

orthotropic geometry. The total thickness of the laminate and that of each

ply are

htot = 0.05385 cm. (0.0212 in.) and

hk - hk- 1 = 0.013462 cm. (0.0053 in.)

Furthermore, R = 19.05 cm(7.5 in.) and

L/R - 2,5,10.

The stacking sequence is

I - 1: - 450/+450/+450/-450

where the first number denotes the orientation of the outermost ply with

respect to the x-axis, and the last of the innermost. Note that 1-1 is a

symmetric geometry (with respect to the reference surface - midsurface).

18



Imperfection Shapes

Two imperfection shapes are used in the study, one which is symmetric

and one which is virually axisymmetric.

symmetric: w°(x,y) h 54 ---. cos ! (20)
L. R.:axisymmetric: w°(x,y) = h(C$4 - 0.1 sine cos (21)

where is a measure of the imperfection amplitude. Note that for the

symmetric imperfection = w /h, while for the (almost) axisymmetric

one, w /lb.h.

111.2 Numerical Results

For all geometries considered, results are obtained for classical

simply supported (SS-3) boundary conditions, Eqs. (22), and zero load

eccentricity. The load case considered is uniform axial compression. The

primary emphasis in the numerical studies is to establish which (design)

parameters influence the accuracy of the Donnell-type of shell approxi-

mation and establish the range of these parameters for which the accuracy

is acceptable (by comparison to the Sanders-type approximation).

Nxx(O,y) =-Nxx ; v(O,y) = w(O,y) = Mxx(O,y) = 0

Nxx(L,y) = -7&x ; v(L,y) - w(L,y) = Mxx(L,y) = 0

Numerical results were generated by employing two different computers:

(a) the interactive computer IBM 43/31 at the Technion (Israel Institute

of Technology) Computer Center and b) the VAX 11/780 of the GTICES

(Georgia Tech Integrated Computer Engineering System) Systems Laboratory of

the School of Civil Engineering.

19



The results for each geometry are presented and discussed separately.

Isotropic Geometry

The results are presented (in part) graphically on Fig. 3 and in

tabular form on Table 1. On Table 1, the geometry, as well as the computed

critical loads (Nx f 0.606 Eh2 /R and N t: limit point loads), the

corresponding wave number, n, and the imperfection amplitude parameter

are presented.

One observation is that the discrepancy between critical loads

obtained from the two different shell theory approximations (Sanders and

Donnell), is primarily affected by L/R and there is a small effect of R/h.

Note that as L/R increases the difference between the two results increases.

Moreover, for the same L/R there is a small R/h effect. As R/h decreases

the difference increases. The combined effect is shown on Fig. 3 by

plotting f versus the square root of the Batdorf curvature parameter, Z,

defined by

Furthermore, the obtained results substantiate the contention (2) that

the Donnell approximation is dependent on the wave number, n. Clearly,

from Table 1, if n > 4 the two theories yield the same critical load

(within one percent), but for n l4 the computed difference can be as large

as ten percent.

Finally, from Fig. 3, one can see that the imperfection sensitivity

4i decreases with increasing values for the curvature parameter. This is so

because, for the same value of the imperfection amplitude parameter,j , the
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TABLE I. CRITICAL LOADS (ISOTROPIC GEOMET(RY);
SS-3; AXIS'fM RIC IMPERFECTION

-Nt
N = x Xl Wve. zN x x c  n 

N o 
Z.. 

.
R N No. Imp.

Case Rmi. L/R R/h kN/cm xe cm(in.) n. nr onI Sander. Donne Ampl.Sanderi I-

10.16(4) 1 1000.0 4.457 0.b52 0.652 13 13 0.5 30.

o .44613 1.... ..

10.16(4) 1 1000. 4.457 0.446 0.652 13 13 0.5 30.

(25.45)

3 10.16(4) 5 250. 71.319 0.246 0.248 8 4 1.0 15.

(407.23)

4 10.16(4) 5 250.C 71.319 0.701 0.719 44 1.0 77.:

(407.23)

5 10.16(4) 10 250.C 71.319 0.790 0.831 3 3 1.0 154.

(407.23) --- -- t

6 10.16(4) 2 188. 125.208 0.395 0. 396 6 6 1.0 26.1

(714.94)

7 10.16(4) 5 188.7 125.208 0.652 0.677 4 4 1.0 67.

(714.94)

8 10.16(4) 10 188.7 125.208 0.753 0.830 3 3 1.0 134A

(714.94)

2
.1t
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computed limit point value approaches the classical value (f increases) as

Z increases. Please note that the curves on Fig. 3 are drawn from points

corresponding to different L/R and R/h values.

In closing, it is worth mentioning that Hoff and Soong (22) plotted

similar results for perfect isotropic cylinders (using linear theory), but

for the SS-l boundary condition, i.e.,

at x = O,L: Nxx - NxxANxy = 0, w - 0 and Mxx = 0 (23)

Their (22) results show that the two approximations yield very close

critical loads (linear theory eigen-values).

Orthotropic Geometry

The orthotropic geometries and their properties are described in the

previous section. The numerical results are presented in tabular form,

Tables 2 and 3, and graphically in Figs. 4 and 5.

Table 2 contains results for various orthotropic configurations with a

virtually axisymmetric imperfection and I [see Eq. (21)1. The first

column denotes the angle that the strong direction makes with the x-axis.

The next three columns describe the geometry. The classical value is

estimated from the data of Ref. 23(see Fig. 10c of this reference; Dk/De is

assumed to be one). The value of Wxx should only be considered an

approximation used as a weighting function. This classical value, which is

based on a linear eigenvalue approach is independent of the R/L ratio (this

is also true for isotropic geometries). The data of Table 2 are plotted on

Fig. 4. Through the plots one may assess better the effect of certain

.4 parameters. Fig. 4 shows plots of ? (the ratio of the limit point load to

the classical load) versus VL2/Rh, which is similar to the Batdorf
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curvature parameter for isotropic construction, for both shell approxima-

tions and separately for the two angles that the strong direction makes

with the x-axis. It is seen from Fig. 4 that the behavior is similar to

that of the isotropic geometry (see Fig. 3), but it is more pronounced for

the9OO-curves than it is for the 00 -curves. In other words, when the

strong axis is in the x-direction, the Donnell approximation is accurate

(within 6%) even for large values of the curvature parameter (for L2 /Rh 1S

20,000). For the 900 -curves the trend is the same, but the Donnell approx-

imation yields less accurate results even for small values of the curvature

parameter. Note that, as in the isotropic case, the effect of L/R is the

predominant one, while the effect of R/h is negligibly small. Moreover,

note that part of the effect due to the construction (orthotropic) is

burried in the weighting parameter Nxx , because Nxx d is dependent upon

the Exx/Eyy ratio. Finally, it is worth mentioning that, regardless of the

approximation (Sanders or Donnell), when the strong direction is along the

x-axis the configuration is more sensitive to the initial imperfection than

when the strong direction is in the hoop direction (?for 00 is smaller

than P for 900, everything else being equal).

Similar results are presented on Table 3 and Fig. 5, with the same

observations. The main difference here is that the imperfection is

symmetric and the R/h ratio is constant. It is stressed again that the

cla'sical critical load is approximate in nature (taken from data of Ref.

23) and thus the critical load parameter?-values should be considered as

qualitative rather than quantitative.
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TABLE 2: CRITICAL CONDITIONS FOR ORTHOTROPIC GEOMETRIES

[w0 -h (cosz. - 0.1 sin - cos-'. ) ]

L

NX lbs/in. N- lx t .
e. e" Nxx/N.x 4

Angle of

Strong (L2/Rh)2 Sanders Donnell lbs Sanders Donnell

Direction R/h L/R Wave No.) (Wave No.)

00 188.7 2 27.5 92(7) 92(7) 487 I 0.189 10.189
I I 0. 7

00 1 5 68.7 222(5) 229(5) 0.456 10.470

00 10 137.4 265(4) 283(5) V 0.544 0.581

900 2 27.5 230(10) 260(11) 481 0.478 0.541

900 9 1 13.7 157(6) 159(6) 1 0.326 0.331

00 353.8 2 37.6 69(8) 69(8) 270 0.256 10.256

00 5 94.0 132(6) - i0.489 -

900 2 37.6 127(7) 144(6) 262 0.485 0.550

900 I 1 18.8 108(7) 111(7) 4 0.412 0.424

*Values estimated (calculated) from data of Ref. 23.

I
'4
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TABLE 3. CRITICAL CONDITIONS FOR ORTHOTROPIC GEOMETRIES

(wO h sin!cos l)

ftt

Angle ofI
I i~x~ b/n "

4
/x

Strong L2 /RH) Sanders Donnell lbs/in Sanders IDonnell

Direction R/h L/R ( _Wave No.) (Wave No.)fP
II

00 353.8 2 37.6 85(9) 85(9) 270 0.315 0.315

00 5 94.0 125(6) 130(6) I 0.463 0.481

00 10 1 8 8 . 0  155(4) 165(4) * 0.574 0.611

900 2 37.6 145(5) 152(5) 262 0.553 0.580

900 5 I 94.0 195(4) 215(4) 0.744 0.821

900 10 188.0 212(3) 271(3) 0.809 1.034

*Values estimated from data of Ref. 23.

27

Now-"



1.0

Done

0 50 100 950 200

(L2 Rh)'

Fig. 5. Load Parameter P (=N /R xi ) vs. (L 2/Rh) 4

x 
XCL

(Orthotropic Geometry; SS-3; Sym. Imp.)

28



Laminated Geometry

For this geometry, the symmetric imperfection shape, Eq. (20), and the

geometric and material properties are presented in a previous article.

This geometry is taken from (21) in which experimental results are

reported for L/R = 2. Note also that because of the stacking (symmetric

and + 450), the resulting configuration has Bij 0 0, and in-plane (Aij) and

bending (Dij) stiffness parameters that are similar to an isotropic

configuration.

For this geometry results are generated for several I-values (imper-

fection sensitivity study) and three values of L/R (2,5,10).

The results are presented in tabular (Table 4) and graphical form

(Fig. 6).

As seen from Table 4, the trend is the same as for the isotropic

geometry. For L/R = 2 the two shell theory approximations yield the same

critical load for all values of the imperfection amplitude parameter, but

different for higher values of L/R. Moreover, the wave number for L/R = 2

is six, while for L/R = 5 is four, and for L/R - 10 is three. The

similarity in behavior between the isotropic and the laminated geometries

is primarily attributed to the fact that for the laminated geometry Bij =

0, All = A2 2 and D11 = D2 2 , which makes the elements of the Aij and Dij

matrices be similar to the elements of an isotropic configuration.

One important difference is that the critical load for the

corresponding perfect laminated geometry appears to be heavily dependent

upon the value of L/R (observation made by extrapolation of C. curves in

Fig. 6). Finally, it is seen from Fig. 6 that the laminated geometry,

regardless of the shell theory, becomes more sensitive to initial geometric
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imperfections as L/R increases. For L/R + 2 the curve is rather flat but

for L/R = 10, the curve drops rapidly. These observations are made on the

basis of the generated results (limited), and they should not be

generalized.

TABLE 4. CRITICAL LOADS (LAMINATED GEOMETRY)

Critical LoadpkN/cm (lbs/in)

L/R = 2 L/R = 5 L/R = 10

Sanders n Donnell Sanders n Donnell Sanders n Donnell

0.5 22.767 6 22.767 25.744 4 26.444 43.783 3 63.047
(130.00) (130.00) (147.00) (151.00) :(250.00) (360.00)

I t - I
1.0 20.665 6 21.103 22.767 4 24.518 33.275 3 45.534

(118.00) 1(120.50) (130.00) (140.00) (190.00) i(260.00)

2.0 17.368 6 1 17.391 19.264 4 21.366 26.270 3 35.902
(98.60) 1 (99.30) (110.30) (122.00) (150.00) (205.00)
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CHAPTER IV

ADDITIONAL RESULTS; w,F - FORMULATION

In addition to the results reported in Chapter III, certain parametric

studies were performed by employing the w,F-formulation (Ref. 15). These

studies include assessment of imperfect.on sensitivity and of the effect of

lamina stacking on the critical conditions of four-and six-ply laminated

cylinders under axial compression and torsion (individually applied).

These geometries represent variations of two symmetric geometries reported

in Ref. 21. Moreover, the effect of L/R-ratios on critical loads is

assessed for the four-ply and the six-ply geometries. In all of these

studies the load eccentricity is taken to be zero and the boundaries are

simply supported (SS-3). The geometries employed in the parametric

studies and the results are next presented, separately.

IV. 1 Description of Geometry

Two basic laminated configurations are used in generating results.

They consist of four-ply laminates, I-i, using various stacking sequences,

and of six-ply laminates, 1I-i with different stacking sequences. For both

groups five stacking sequences (i = 1,2,... 5) are employed.

First, the common properties of the orthotropic laminae (Boron/Epoxy;

AVCO 5505) are:

Ell = 2.0690 x 108 kN/m
2 (30 x 106 psi)

E2 2 = 0.1862 x 108 kN/m2 (2.7 x 106 psi) (24) 9

C1 2  0.0448 x 108 kN/m
2 (0.65 x 106 psi) VW2 0.21

.! Furthermore
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R = 19.05 cm (7.5 in.)

and the length, L, is varied so that

L/R - 1,3 and 5.

The ply thicknesses (hk - hk_ 1) and the total laminate thickness for each

group is:

I-i; hk-hk_ 1 - 0.013462 cm (0.0053 in.) (25a)

h = 4 (hk-hkI) = 0.05385 cm. (0.0212 in.)

and II-i; hk-hk_1 - 0.008975 cm (0.003533 in.) (25b)

h = 6(hk-hk_1 ) 
= 0.05385 cm (0.0212 in.)

Note that for both groups (I-i and I-i), the radius to thickness

ratio is 353.77 (=R/h).

For each group the five stacking combinations are denoted by I-i or

1I-i, i = 1,2, ..5 and they correspond to

I-1 = 450/-450/-450/450; 1-2: 450/-450/450/-450; (26a)

1-3 = -[1-2]; 1-4: 900/600/300/00; 1-5: 00/300/600/900

11-1: 00/450/-450/-450/450/00

11-2: -450/450/-450/450/-450/450/450

11-3 = -[11-21 (26b)

11-4 : -90o/720/540/360/180/00

11-5 : 00/180/360/540./720/900

Where the first number denotes the orientation of the fibers (strong

orthotropic direction) of the outermost) ply with respect to the x-axis,

and the last of the innermost. Note that in the u,v,w-formulation,

geometry I-1 (same as in this chapter) is listed as -450/450/450/-450.

4 This is so because the system of reference axes used in the u,v,w-
I

formulation (see Fig. 1) is different from the one employed in the
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w,F-formulation (see Ref. 15) [the x-axis is the same as shown on Fig. 1,

but the y-and z-axes are opposite from those shown on Fig. 1].

Geometries I-1 and II-1 are symmetric with respect to the midsurface

and they are identical to those employed in Ref. 21. Geometries 1-2,3 and

11-2,3 denote antisymmetic, regular (hk-hk.l = constant) angle-ply

laminates. Finally, geometries, 1-4,5 and 11-4,5 are completely asymmetric

with respect to the midsurface.

Two load cases are considered and for each load case different imper-

fection shapes are employed. These are:

(&) for uniform axial compression

(a) for geometries I-i (i = 1,2 ..5)

w° (x,y) = h sinM cos

(b) for geometries III-i (i 1,2, ..5)

wo(x,y) (cos-+ 0.1 sinL- cos M)

Note that the first one, Eq. (27) denotes a symmetric shape, while the

second one, Eq. (28), an (almost) axisymmetric shape.

(0) for torsion

(a) for L/R -I

I-i: wO(x,y) = 0.6235383 h L- in  si si -- 0) cos-=1
L 3 L ..

I -i: w (x ,y ) = h [-0.583 133 (sin - sin3 --* -) cos -

+ 0.647926 (sin - --- sin---) sin -] (2' 4)

for L/R - 2 and both groups

!O(xy) - 1h [-0.536769 (sin- - sin -) cos

w0(y)1. 3 L P
+0.670961 (sin 2  - sin 1 M) sin n

i. a L (3c
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(c) for L/R 5 and both groups

w°(x,y) =?h [-0.417060 (sin - £sin- Cos
L 3 L

+ 0.694444 (sin- -- sin-) Sin R

+ 0.833333 (isin !r sin 5") cos ( )
3 L R

For this load case (torsion), the imperfection shape is taken to be

similar to the linear theory buckling mode (see Ref. 15). These shapes,

Eqs. (29), (30), and (31), represent some average of the modes of the

various configurations (the modes are very similar for all configurations).

1V.2 Discussion of Results

The results for all configurations are presented both graphically and

in tabular form. Each group through, is discussed separately.

Table 5 presents critical loads (limit point loads-uniform axial

compression) for geometries I-i and three values of L/R (1,2 and 5). The

imperfection shape for this group is symmetric, Eq. (27), and the amplitude

parameter varied from a small number up to two (wmax/h . The

values obtained from the wF-formulation differ slightly from those

obtained by the u,v,w-formulation (see Table 4). The difference is not

caused by the two different formulations (both based on Donnell equations),

but it is attributed to the fact that the load step in the u,v,w-formula-

tion is larger than in the w,F-formulation. This is so, because it is

much more expensive (in time and money) to run the program for the former

formulation. It is seen from Figs. 7-9 that, for L/R -1 and small values

forl (1,4 0.75), the weakest configuration corresponds to 1-2,3 (regular

antisymmetric angle-ply laminate), while the strongest configuration is the
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TABLE 5. CRITICAL LOADS; UNIFORM AXIAL
COMPRESSION (I-i GEOMETRIES)

x in lbs/in (wave No. at Limit PtO

Geometry L/R I L/R 2 L/R 5

0.05 - 145.6 (6) -

0.10 130.7 (9) - 153.7 (4)
I- 1 0.50 118.9 (9) 136.0 (6) 147.7 (4)

1.00 104.5 (9) 123.0 (6) 135.9 (4)
2.00 67.1 (9) 98.3 (6) 121.0 (4)

0.05 - 138.8 (6) -

0.10 126.7 (9) - 145.3 (4)
I- 2,3 0.50 115.1 (9) 130.0 (6) 140.2 (4)

1.00 98.6 (9) 118.7 (6) 129.0 (4)
2.00 61.3 (9) 92.2 (6) 111.4 (4)

0.01 - 243.1 (8)
0.05 - 232.0 (8) 245.4 (5)

1-4 0.10 189.9 (12) - -

0.50 130.7 (11) 178.0 (8) 211.5 (5)
1.00 86.8 (11) 137.2 (8) 187.7 (5)
2.00 46.1 (10) 90.0 (8) 153.4 (5)

0.05 233.3 (8) 292.9 (5)
0.10 183.3 (11) - -

1-5 0.50 146.3 (11) 191.0 (8) 268.3 (5)
_ _1.00 97.5 (12) 150.0 (8) 239.0 (5)

2.00 48.0 (11) 109.5 (8) 194.0 (5)

Symmetric Imperfection

*1
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asymmetric 1-5 (except for a very small range of extremely small -

values). But, as L/R increases, 1-2,3 yields the weakest configurations for

virtually all !-values. Moreover, for L/R> 2 the order of going from the

weakest to the strongest configuration is 1-2,3, 1-1,1-4 and 1-5. Note

that asymmetric stacking may be compared to eccentric positionning of the

orthogonal stiffeners in metallic shells.

Table 6 presents critical loads (uniform compression) for geometries

11-i. The results are similar to those for group I (geometries 1-i) but

with one exception; geometry II-I is among the strong configurations,

while I-1 is among the weak configurations, especially for higher L/R

ratios (see Figs. 10-12 and 7-9). The reason for this is that the II-1

geometry has 00 plies on the outside and inside of the laminate, which

increases its stiffness in the axial direction.

The results, for this group, are also presented graphically on Figs.

10-12. Fig. 10 contains results for L/R - 1. No results are reported

(limit points could not be found) for C > 1.0. This implies, that for this

L/R value and F > 1 the load-deflection curve does not exhibit limit point

instability, but only stable response. For L/R 2, the picture changed

and limit points are found. Note from the three figures, Figs. 10-12, that

as L/R increases the imperfection sensitivity of all configurations

decreases (the curves do not fall as sharply as they do for L/R - 1).

It is worth noticing that for L/R i2, there are many crossings of

the curves and it is not easy to identify the strongest or the weakest

configuration (which is C-dependent). On the other hand, at L/R - 5, the

strongest configuration is 11-5 and the order of going from the strongest

to the weakest is, 11-5 , II-1 , 11-4 , 11-2,3. As expected, the + 450
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TABLE 6. CRITICAL LOADS; UNIFORM AXIAL
COMPRESSION (II-i GEOMETRIES)

Nix in lbs/in.(wave No. at Limit Pt)

Geometry L/R I1 L/R - 2 L/R - 5

0.10 231.7 (12) 244.86 (8) 255.6 (5)
II-1 0.50 120.9 (11) 171.3 (8) 219.4 (5)

1.00 63.4 (10) 112.5 (8) 182.7 (5)
2.00 - 58.4 (7) 128.2 (5)

0.10 133.5 (9) 140.5 (6) 150.8 (4)

II - 2,3 0.50 120.7 (9) 134.6 (6) 147.8 (4)
1.00 87.2 (9) 114.1 (6) 136.2 (4)
2.00 44.7 (8) 72.6 (6) 111.4 (4)

0.10 177.7 (10) 211.3 (8) 227.0 (5)

II 4 1 0.50 101.7 (10) 157.0 (7) 199.3 (5)
1.00 57.9 (10) 108.7 (7) 171.0 (5)
2.00 i - 56.8 (7) 128.8 (5)

0.10 173.5 (11) 199.5 275.0 (5)
11-5 0.50 124.0 (10) 191.3 261.7 (5)

1.00 66.7 (10) 139.0 227.9 (5)

2.00 70.4 (7) 168.4 (5)

Axisymetric Imperfection
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antisymmnetric laminate is not the best layup for resisting axial

compression.

Table 7 presents critical loads for geometries I-i subjected to

torsion. The results are also presented graphically on Figs. 13-15. The

reader is reminded that the imperfection shape for this load case is

similar to the linear theory eigenmode (see Ref. 15) and it is L/R-

dependent. Regardless of the shape, the imperfection paramer, C, is equal

to wmax/h. For all L/R values the I-1 geometry seems to be the weakest one.

On the other hand, geometry 1-5 yields the strongest configuration. For

L/R = I the 1-2,3 configurations seem strong, but as L/R increases they

become weaker by comparison to the asymmetric configurations. If torsion

were to be reversed the strength of the 1-2,3 configurations would remain

unchanged (the role of 1-2 and 1-3 would be interchanged), while the asym-

metric configurations could change for the worse. The reason for this

expectation is that for positive torsion, tension is expected along a

direction making a positive angle with the x-axis (for isotropic construc-

tion it would have beent450 ). The fibers are placed from 00 to 90 or from

900 to 00 in the various layers of 1-5 and 1-4. Thus, the tensile uni-

directional strength of the fibers is utilized. If the torsion is

reversed, these same fibers would tend to be in compression and this would

imply that 1-4 and 1-5 are weaker for negative torsion than for positive

torsion. Of course no mention is made of the effect of the (negative

torsion) imperfection shape. This could be a totally separate study.

Along these lines, note t',at the I-I geometry (see Ref. 15) is stronger

when loaded in the negative direction than in the positive direction,

provided that the imperfection shape is similar to the positive torsion

buckling mode.
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TABLE 7. CRITICAL LOADS; TORSION
(I - i GEOMETRIES)

NY in lbs/in (wave No. at Limit Pt.)

Geometries L/R = 1 L/R =2 L/R 5

0.1 55.34 (15) 35.32 (11) 21.00 (7)
I -1 0.5 45.36 (15) 31.57 (II) 19.43 (7)

1.0 43.62 (15) 28.32 (11) 18.01 (7)

0.1 78.90 (13) 46.4 (9) 24.91 (6)
1- 2 0.3 73.16 (13) - -

0.5 66.36 (13) 41.81 (9) 23.15 (6)
1.0 - 37.89 (9) 21.57 (6)

0.1 79.34 (13) 46.36 (9) 24.84 (5)
1- 3 0.3 73.41 (13) - -

0.5 66.50 (13) 41.84 (9) 23.08 (6)

1.0 37.96 (9) 21.51 (6)

0.1 56.69 (16) 44.18 (12) 29.81 (8)
1-4 0.5 45.91 (15) 38.75 (12) .27.16 (8)

1.0 39.51 (14) 34.22 (12) 24.74 (8)

0.1 84.83 (16) 66.49 (12) 42.91 (8)
1-5 0.5 64.20 (16) 56.91 (12) 38.50 (8)

1.0 46.79 (15) 48.72 (12) 34.27 (8)
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TABLE 8. CRITICAL LOADS: TORSION

(II-i GEOMETRIES)

in lbs/in (wave No. at Limit Pt)

Geometry L/R = 1 L/R i2 L/R 5

0.1 53.54 (18) 38.49 (13) 25.50 (9)
II-1 0.5 43.49 (17) 31.74 (13) 23.10 (9)

1.0 40.15 (17) 27.17 (13) 20.92 (9)

0.1 82.46 (14) 48.25 (9) 26.17 (6)
0.3 73.194 (13) -

11-2 0.4 69.76 (12) - -
0.5 - 42.43 (9) 24.50 (6)
1.0 - 37.31 (9) 23.00 (6)

0.1 82.12 (13) 48.25 (9) 26.22 (6)
0.3 73.07 (13) - -

11-3 0.4 69.69 (13) - -

0.5 - 42.45 (9) 24.55 (6)
1.0 37.40 (9) 23.06 (6)

0.1 57.13 (16) 44.11 (12) 29.69 (8)
11-4 0.5 44.23 (15) 37.73 (12) 27.36 (8)

1.0 37.46 (15) 32.54 (II) 25.29 (8)

0.1 81.19 (16) 63.61 (13) 41.96 (8)
11-5 0.5 56.42 (16) 52.33 (12) 38.10 (8)

1.0 42.23 (14) 41.38 (13) 34.51 (8)
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Table 8 presents critical torques for geometries II-i. The results are

also presented graphically on Figs. 16-18. The conclusions are very

similar to those for geometries I-i. There is one important observation

though derived from the comparison of the two groups. Since both groups

have the same total thickness (0.0212 in.) and radius (7.5 in.) use of more

layers (from four to six) increases the load carrying capacity for the

antisymmetric configurations (11-2,3 versus 1-2,3), but it decreases it for

the asymmetric configuration 11-5 (it can even be said for 11-4). The

comparison between II-1 and I-I is not valid, since 11-1 contains two

00 -plies (outer and inner), while I-1 has no such plies.

Finally, when the curves (see Figs. 13 and 16) terminate at = 0.5,

it means that no limit point could be found for higher -values.

Experimental results do exist for some of the configurations discussed

in this section (see Ref. 21). These along with other experimental

findings are discussed in the next section.

IV.3 Comparison with Experimental Data

The best means for establishing confidence in an analytical method

is to compare it with experimental results, obtained by researchers not

connected in any manner with those who developed the analytical procedure.

The purpose of the present section is to present such a comparison.

The literature was searched and two sets of experimental results are found;

(a) those for which the imperfect geometry is described in terms of 9

imperfection shape and amplitude and (b) those for which there is no data

describing the initial geometric imperfection. Moreover, the load cases

considered are uniform dxial compression and torsion, applied either 9

individually or in combination.
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The comparison for class (a) (above) is direct, because both the shape

and the amplitude of the initial geometric imperfection are known. On the

other hand for class (b) geometries, the comparison is made by assuming a

shape for the initial geometric imperfection and by varying the amplitude

from some small fraction of the total thickness (five or ten percent to

approximately 50% of the total thickness). Clearly, for this latter class

of imperfect geometries, the comparison is more qualitative.

IV.3.l Description of Geometry

Experimental results, used herein for comparison with theoretical

predictions, are obtained from four sources. The first source is an

unpublished paper presented by Professor Shigeo Kobayashi at the

AIAA/ASME/ASCE/AHS 23rd SDM Conference in New Orleans in 1982 (Ref. 24).

The presentation took place in a "Work in Progress" session (structures).

At this presentation the author supplied the audience with an addendum to

his abstract which described the experimental results on Graphite-Epoxy

Composite cylinders in axial compression. Through this information and

private communication that followed, the complete description was secured

and is listed herein as Group A. The imperfection amplitude and shape are

not known for this group.

The second source (Ref. 25) is a 1976 University of Toronto report

in which analytical and experimental results are given for imperfect Glass/

Epoxy cylinders subjected to combined loading. Only one set of results is

employed herein and it is listed as Group B. Information concerning the

imperfection shape and amplitude is provided by the author and listed below.

The load case for this group is a combined application of axial compression

and torsion.
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The third source is a 1974 AIAA Paper (Ref. 21) which presents

experimental results for Boron/Epoxy and Graphite/Epoxy imperfect cylinders

subjected to axial compresion and torsion, applied either individually or

in combination. Certain geometries, from this reference are employed

herein. These configurations are listed below as Group C. Information is

not provided for the imperfection shapes and amplitudes.

Finally, the last source is a 1973 Journal of Spacecraft paper (Ref.

26), which describes experimental and theoretical results on axially-loaded

Glass/Epoxy imperfect cylinders. This work was also performed at the

University of Toronto under the direction of Professor Tennyson. Three

geometries from this source are employed herein and they constitute Group D.

The imperfection shape and amplitude are supplied by Ref. 26.

In describing each group, information concerning the following is

provided: Load case, number of plies, stacking description and order,

material and material properties, ply and laminate thickness, length and

radius of the laminate, boundary conditions, and information on the

geometric imperfection. Each configuration in a group (if more than one)

is listed as case-Li, where i is an integer, and L assumes the letters A,

B, C and D (group).

Group A (Kobayashi et al - Ref. 24)

I) Load: Uniform Axial Compression

2) Material: Graphite/Epoxy

3) Material Properties: Ell = 17.40 x 106 psi;

E22 = 1.115 x 106 psi

G1 2 - 0.707 x 106 psi

V 12 = 0.32
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4) Diameter and Length: 2R = 7.874 in.; L = 7.874 in.

5) Boundary Conditions: CC-4 (u = u, v = w = w,x = 0)

6) Imperfection: No information. So far, the data are common for all

cases.

Case-Al: A three-ply laminate (900/-200/200)

hply = 0.0055 in., h = 0.0165 in.

Case-A2: A four-ply laminate (900/-450/-450/00)

hply = 0.0057 in. h = 0.0228 in.

Case-A3: A six-ply laminate (900/900/300/-300/-300/300)

hply = 0.0059 in.,

h = 0.0354 in.

Note that all three configurations are asymmetric with respect to the

midsurace.

The stacking order starts from the outside of the cylinder and moves

inward. Thus, in case-Al the outer ply strong axis (of orthotropy) makes a

900 angle with longitudinal axis of the cylinder; the next ply makes a

-200 and the inner one a 200 angle with the longitudinal axis.

Case-A4: There is a fourth configuration in this group, for which all

data are the same as Al, A2, and A3 except for the material

properties, thickness and the sequence of stacking. For this

case,

Ell = 16.78 x 106 psi; E22 = 0.922 x 106 psi;

G12 - .707 x 106 psi; V 12  0.32

h ply 0.00667 in; h - 0.04 in. and the stacking sequence for this six-

ply laminate is: (0o/60o/-60o/-60o/60o/00)
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Note that, unlike the other three configurations in this group, this

laminate is symmetric with respect to the midsurface.

Group B (Booton, Ref. 25)

1) Load: Combined Axial Compression and Torsion.

2) Material: Glass/Epoxy

3) Material Properties: Ell = 6.32 x 106 psi;

E22 = 1.74 x 106 psi;

G12 = 0.78 x 106 psi;

12 = 0.435.

4) Diameter and Length; 2R = 13.2 in.; L = 12.4 in.

5) Boundary Conditions: CC-4 (u = u; v = w = w = 0).

6) Imperfection: w°(x,y) = (0.28) (0.27) cos 17
L

(w° is positive inward; axisymmetric imperfection).

Only one configuration is used for this group.

Thus, case-Bl: A three-ply laminate (450/0°/-450)

hply = 0.009 in.; h 0.027 in.

Group C (Wilkins et al. - Ref. 21)

1) Load: Combined Axial Compression and Torsion

2) Material: Boron/Epoxy and Graphite/Epoxy

3) Material Properties:

(i) Boron/Epoxy (ii) Graphite/Epoxy

Ell - 30.0 x 106 psi Ell = 2.17 x 106 psi

E22 - 2.7 x 106 psi E2 2 - 1.44 x 106 psi
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G12 = 0.65 x 106 psi G12 - 0.65 x 106 psi

"12 = 0.21 ")12 - 0.28

4) Diamater and Length: 2R = 15 in.; L - 15 in.

5) Boundary Conditions: SS-3 (Nxx-iNxx; V - w = Mxx = 0)

6) Imperfection: No information

So far, the data are common for all cases.

Case-Cl: A four-ply Boron/Epoxy laminate

(450/-450/-450/450) hply = 0.0053 in.

h = 0.212 in.

Case-C2: A six-ply Graphite/Epoxy laminate

(0o/45 0/-450 /-45 0/0o)

hply = 0.0056 in., h = 0336 in.

Note that both configurations are symmetric about the laminate

midsurface.

As in Group A, the stacking sequence starts from the outside and moves

inward.

Group D (Tennyson and Muggeridge, Ref. 26)

1) Load: Uniform Axial Compression

2) Material: Glass/Epoxy "Skotchply" (XP250)

3) Material Properties: The properties are given separately for each

configuration.

4) Diameter and Length: 2R - 12.5 in., L - 12.45 in.

5) Boundary Conditions: CC-4 (u -i5; v w - W,x 0).

6) Imperfection: w°(x,y) = h cosmx

L
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Note that the laminate thickness (h) wave number m) and imperfection

amplitude (9) depend on the configurations (case). Furthermore, the

imperfection shape for all configurations, is axisymmetric.

The above data are common to all cases

Case-DI: A three-ply Glass/Epoxy laminate (00/700/-70'3)

Ell = 5.03 x 106 psi; E2 2 = 2.58 x 106 psi;

G12 = 0.837 x 106 psi; V12 = 0.345

hl = h2 = h3 = 0.009 in (hi thickness of each ply;

from outer to inner: 1, 2, 3).

h = 0.027 in. = 0.0468

= Womax/h) ; m = 18 (see the imperfection expression);

Case Ia of Ref. 26.

Case-D2: A three-ply Glass/Epoxy laminate (450/-450/900)

Ell = 6.109 x 106 psi;

E22 = 2.69 x 106 psi; G12 = 0.517 x 106 psi;

V 12 = 0.317

hl = 0.009 in; h2 = h3 = 0.0092 in; h = 0.274 in.

- 0.034; m = 18; case 4a of Ref. 26

Case-D3: A three-ply Glass/Epoxy laminate (300/900/300)

Ell = 5.42 x 106 psi; E2 2 f 2.6 x 106 psi;

G1 2 = 0.687 x 106 psi; V1 2  0.365
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hl = h 3 = 0.009 in., h2 = 0.0093 in.; h - 0.0273 in.

- 0.0304; m = 17; case lla of Ref. 26.

Note that all three confirgurations are asymmetric. Moreover, all data are

taken from Ref. 26. In Ref. 26, the imperfection (axisymmetric) is given

in the form of

w°(x) = h cos Ax (32)
R

where the number q is given (Ref. 26). The imperfection expression is

changed, herein, to be compatible with Eqs. (12).

The solution methodology described in Ref. 15 is employed to compute

critical (limit point) loads which are then compared to the experimental

results. This is easily done for the configurations for which the imper-

fection shape and amplitude are fully decribed.

For the geometries, for which no information concerning the imperfec-

tion is given, the comparison is more qualitative.

IV.3.2. Theoretical Results and Discussion

The theoretical predictions, based on the solution scheme of Ref. 15,

and the comparison with the experimental results is discussed separately

for each group of configurations.

Group A

Since no information is provided (for this group), concerning the

amplitude and shape of imperfection, the comparison is expected to be more

qualitative than quantitative. It is assumed that the shape of imperfec-

tion is almost axisymmetric and the amplitude of imperfection is varied
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from a small fraction of the thickness to almost one thickness of the

laminate.

w°(x,y) =-h (cos-2Z + 0.1 sin*"M? cosqy.-) (28)L L
Note that IWmaxI = 1.1 1 h, where h is the laminate thickness.

Both the theoretical and the experimental results are presented in

tabular form (see Table 9).

On Table 9, the buckling load and the observed circumferential wave

number are listed on columns two and three (data from Ref. 24). The next

three columns contain theoretical results for three values of the imperfec-

tion amplitude parameter I. For case-Al, the comparison suggests that the

maximum imperfection amplitude for the tested geometry might be larger than

one laminate thickness. Note that when t= I (w~max/h = 1.1) the

theoretical load is 133.83 lbs/in.

For case A2, the comparison suggests, that the "tested geometry"

maximum imperfection amplitude is (approximately) 0.9 h.

Finally, the comparison for the other two cases (A2 and A4) is much

better, since it suggests that the maximum imperfection amplitude is 0.4 h.

Again, it is stressed, that for this group the comparison is rather

qualitative.

Group B

Only one geometry is taken from Ref. 25. According to this reference,

the imperfection is axisymmetric and experimental results are reported for

a combined application of uniform axial compression and torsion. Moreover,

theoretical predictions are reported in Ref. 25, which are obtained by

employing a solution scheme that assumes axisymmetric prebuckling behavior

and finding bifurcation loads corresponding to asymmetric behavior.
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TABLE 9. THEORETICAL AND EXPERIMENTAL RESULTS FOR GROUP A

Geometry Experimental Theoretical

. n . n
Case- Nxx lbs. wave Nxx lbs. wave 9*.Imp.

in. No. in No. Amplitude

Al 120.56 10 151.19 12 0.3
140.55 12 0.5

133.83 12 1.0

A2 248.46 8 362.30 9 0.1
294.54 9 0.5

231.83 9 1.0

A3 802.99 945.78 9 0.1
872.99 9 0.3

792.91 9 0.5

A4 i 892.02 944.66 10 0.2
895.38 10 0.3

6
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The present results, along with the theoretical predictions of Ref. 25

and the experimental findings are presented graphically on Fig. 19. It is

clearly seen from this figure that the agreement is very good.

Group C

For this particular group there is no information concerning the

amplitude and shape of imperfection. It is important then, to employ some

shape for the imperfection and vary the imperfection amplitude in order to

accomplish some comparison (qualitative) with the experimental results

(Ref. 21).

Because the loading consists of both axial compression and torsion,

three imperfection shapes are initially employed. First, a virtually

axisymmetric imperfection is used, which is characterized by Eq. (28).

The other two shapes, used for the imperfection, correspond to

appxoximations of the linear theory (Ref. 15) buckling modes for positive

and negative torsion.

In particular, one of the Appendices of Ref. 15 deals with solutions

to the linearized buckling equations for the case of pure torsion. The

Galerkin procedure is employed and the following approximate form, for the

buckling mode, w l , is employed:

~: Rq~ (33)

jv LwTr L (Y+xrL J

jBecause of orthogonality only one n-value is needed. A ten-term

approximation (m - 5) is obtained in Ref. 15. By studying the results it
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is observed that the linear theory buckling mode is well approximated by

two terms. This is accomplished by normalizing all coefficients, in the

ten-term approximation, with respect to B2n. A comparison of the order of

magnitude of these coefficients yields that all are negligibly small except

two. Finally, these two remaining coefficients are adjusted such that the

maximum aplitude is)h. Thus, one two-term approximation is used for

positive torsion, wO(+), and one two-term approximation for negative

torsion, w°(-). These expressionsare (applicable to both configurations;

cases C1 and C2).

WO(+)=g[0-537r*5! s '~ "! - I-

w° -- O.&7i 5 Ci - -- ; "--(5 7 T(34)

[0, 5) { 583u C-A tL (5 ,M - 5 4

(35)
R L

Note that, for both expressions (by design)

(36)

The generated results for each configuration are presented (in part)

both in graphical and tabular form. Each configuration is treated

separately.
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Case C-i: For the case of pure torsion, theoretical predictions are

generated for the two imperfection shapes, Eqs. (34) and (35), and for pos-

itive and negative torsion for each shape. These theoretical predictions

are shown as plots of the value of the critical (limit point) torsion X)

versus the imperfection amplitude parameter, C , on Fig. 20. Note that as

the imperfection amplitude approaches zero the results corresponding to the

two shapes w°(+) and w°(-), approach the same value (as they should).

Moreover, it is seen that the shape corresponding to Eq. (34) has a

stabilizing effect for small values of 9 and for negative torsion.

The experimental values for positive and negative torsion are also

listed on Fig. 20. Note that, for positive torsion the experimental value

is 26.5 lbs/in, and the comparison with the theoretical result suggests that

the imperfection amplitude is a little larger than one laminate thickness.

On the other hand, for negative torsion, the experimental value is 65.7

lbs/in, and the comparison suggeststhat the imperfection amplitude is less

than two tenths of the laminate thickness.

Tn addition, Ref. 21 provides experimentally obtained, buckling

interaction curves (Nxx vs Nxy) for this geometry. Again since the

imperfection is not known, theoretical interaction cuvres are obtained

analytically for two shapes of imperfection. Eqs. (28) and (34) and

various values for the imperfections amplitude parameter, 0 . This

comparison is for positive torsion and the results are shown graphically on

Figs. 21 and 22. The experimental data are shown by the dashed line.

For this case the comparison must be viewed as qualitative rather than

quantitative.
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Case - C2: For this six-ply symetric laminate, a qualitative type of

comparison is presented only for positive torsion. The results are, in

part, presented graphically on Fig. 23 and in tabular form on Table 10.

Table 10 shows theoretical results obtained by the present analysis,

for two imperfection amplitude parameter values ( t- 0.05 and 't= 0.50) and

the shape characterized by Eq. (34). First, the critical values corres-

ponding to individual application of the loads are obtained and then the

interaction curve is completed by assigning values for the applied torsion

and finding the corresponding critical (limit point) axial compression.

Note that the assigned values for the torsion are smaller than the

individually applied critical torsion.

TABLE 10. CRITICAL CONDITIONS FOR CASE - C2

Nxx 442.6 348.1 232.3 70.32 0
lbs/in.

0.05
0 20 40 60 76.4

lbs/insn 13 13 12 13 12

lbs/in. 328.3 262.5 70.5 0
0.50

Nxy 0 15 14 61.4
lbs/in.
n 12 14 12 12

6
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On Fig. 23 the experimental results of Ref. 21, and only the

theoretical prediction corresponding to - 0.05 are shown. The two curves

seem to be very close for the entire range of interest. Thus, the

comparison between experimental and theoretical interaction curves seems to

be reasonable for this geometry.

Group D

There are several tests reported in Ref. 26. In ill of these tests,

the imperfection is axisymmetric and theoretical critical loads are

reported in Ref. 26, which are obtained by employing a linearized bifurca-

tion analysis. The present methodology is employed and a comparison is

made through Table II. In this table, the geometry, Ref. 26 results, and

the present critical loads are listed.

For the first geometry (case-Dl), the agreement between experiment

(buckling load) and present theory (critical load) is excellent. The

theoretical prediction of Ref. 26 is also very good. For the other two

geometries (cases - D2 and D3) the agreement seems to be reasonably good

(acceptable). For the same reason, the theoretical prediction of Ref. 26

may also be called reasonably good.
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TABLE 11. A COMPARISON BETWEEN THEORY AND EXPERIMENT FOR GROUP D

Present
Description of Geometry Ref. 10 Results Results

Geometry L h R/h m 3 Test N,,(lbs/in) lbs

Case- in. in. No. Exper. Theor. N,,, n. n

DI 12.42 0.0270 232 18 0.0468 la 148.9 153.2 151.2 11

D2 12.45 0.276 267 18 0.0340 I 4a 142.0 165.1 174.5 11

D3 12.43 0.0273 229 17 0.0304 lla 149.1 185.2 174.3 11

IV.4 Concluding Remarks

The comments of this section are only related to the work reported in

Chapter IV.

The limited parametric studies, reported herein, suggest that, in

order to resist uniform axial compression effectively, 00-plies should be

placed at the extreme plies of the laminate (1-4,5, 11-1,4,5). Clearly the

anti-symmetric +450 layup yields a weak configuration for this load case.

On the other hand for torsion, an asymmetric layup (of the type considered

here, 1-4,5 and 11-4, 5) can be very efficient for torsion of a specified

direction (say positive), but if the torsion is reversed, its efficiency is

in doubt. The antisymmetric + 450 layup, though, seems to be efficient for

torsion, which is expected to be acting in both directions (for different

load conditions, of course). The symmetric layup (1-1 and 11-1) seems to

be the weaker configuration, for torsion (by comparison to all used

herein.)

The comparison with experimental results seems to be rather good.

When direct comparisons (quantitative) were possible (groups B and D) the

agreement was good. The qualitative comparison can also be considerd a

success. These comparisons definitely increase one's confidence in the

theoretical solution scheme.
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CHAPTER V

CONCLLSIONS AND RECOMMENDATIONS

On the basis of the generated results and their assessment certain

findings can be reported.

First, theoretical solutions schemes have been developed for analyzing

the behavior of stiffened, laminated, thin cylindrical shells with initial

geometric imperfections, various boundary conditions and subjected to

static or suddenly applied destabilizing loads (eccentric and applied

individually or in combination). Behavior includes the establishment of

critical conditions and post-limit point reponse. This is true for the

w,F-formulation which is based on Donnell-type of kinematic relations. With

the u,v,w-formulation (regardless of the character of the kinematic

relations) dynamic critical loads cannot be found, since the solution

scheme was not carried to the post-limit point response (it was deemed

-nnecessary to do so, because it is very expensive in time and money and

the expected benefits did not justify this extra effort).

Next, by comparing critical static loads obtained from two different

sets of nonlinear kinematic relations (Donnell and Sanders) it is seen that

for isotropic constructions or laminates with properties and layups that

yield properties similar to isotropic construction (Bij = 0 All = A 22 , DIl

D22 , A1 3 - A2 3 = D13 = D23 0) the L/R ratio is the only influencing

parameter. This means that the two results are virtually the same for

small to moderate values of L/R (L/R4 5),but they differ by as much as 15%

at large L/R values (L/R 2 10).

For orthotropic construction the results are similar to the isotropic

case, when the strong direction is along the cylinder axis (00 along
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x-axis) but they start having significant differences, even for small L/R -

values (L/R42), when the strong direction is in the hoop direction

(y-axis). This conclusion is based on axial compression. No assessment is

made for other load cases and/or other laminate layups (+ 450 anti-

symmetric, asymmetric etc).

It is important (and therefore recommended) to continue this study

and (a) establish which design parameters affect the accuracy, when using

Donnell-type of kinematic relations, and (b) establish limits or bounds on

these parameters inside which the Donnell equations yield accurate results.

Moreover, even through the use of Donnell equations, more parametric

studies are needed (of the type, reported in Chapter IV), in order to

enhance our understanding of the buckling behavior of laminated shells, and

therefore improve our capability of designing efficient laminated shells.

Finally, the comparison between theoretical predictions and

experimentally obtained results serves to increase our confidence in the

developed solution scheme. Thus, this solution methodology may confidently

be used, especially in the preliminary design stage, because it allows a

quick and an inexpensively obtained assessment of the effect of various

design variables on the load carrying capacity of thin cylindrical shells

(when subjected to destabilizing loads).
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